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A B S T R A C T

Hyperspectral imaging technologywith chemometricswas used for identifying and counting each species inmicrobial community
during mixed fermentation. Hyperspectral images of microbial community of Enterobacter sp, Acetobacter pasteurianus, and
Lactobacillus paracasei colonies were obtained and the spectra of strain colonies were extracted. Identification models were
developed using linear discriminant analysis (LDA) and least-squares support vector machine (LS-SVM) by using 23 variables
selected by genetic algorithm. The optimal LS-SVM model with an identification rate of 96.67 % was used to identify colonies
and prepare colony distribution maps in color for strains counting. The counting results by hyperspectral imaging technology
agreed with that of the manual counting method with an average relative error of 3.70 %. The developed counting method has
been successfully used to identify and count the specific strain from the mixed strains simultaneously.The hyperspectral imaging
technology has a great potential to monitor changes in the microbial community structure.

© 2021 The Authors. Publishing services by Visagaa Publishing House
This is an open access article distributed under theCCBY-NC4.0 license (https://creativecommons.org/licenses/by/4.0/).

1. INTRODUCTION

Mixed fermentation occurs in many Chinese traditional fermented
food, such as vinegar, wine, and soy sauce [1]. It involves
more than one microbial strain and many different types of
interactions between them exist during fermentation [2]. Vinegar
is produced from glutinous rice, wheat bran, and rice hull in
a special environment through mixed fermentation of various
microorganisms [3, 4]. Numerous studies conducted to analyze
the fermentation microflora in vinegar fermentation indicated that
Lactobacillus, Acetobacter, and Enterobacter were the dominant
bacteria in fermentation stage [5, 6]. Acetobacter is involved in
the oxidation of ethanol to acetic acid as the main ingredient
of vinegar [7]. Lactobacillus greatly contributes to the formation
of lactic acid, which plays a crucial role in moderating the
irritating odor of vinegar [8]. Enterobacter can produce a variety
of substances in terms of aroma and flavor (such as amylase
and lipase). Many vinegar industries always made substandard
vinegar products because of unbalanced flora structure causing
insufficient or over fermentation. Structure ofmicrobial community
can strongly influence the quality and characteristics of the mixed-
culture fermentation of vinegar [3, 9]. Therefore, monitoring of the
microbial diversity is crucial to know the fermentation state and
control vinegar quality.

Traditional culture-dependent method and molecular
fingerprinting techniques were widely used to investigate the
microbial community in fermentation [10, 11]. Traditional
culture-dependent methods require a minimal investment in
terms of the equipment and agar cultures, which are relatively
low cost [12]. However, this method has a further limitation in
counting a specific strain of colonies from mixed strain colonies,
which have similar morphologies as well as physiological and
biochemical characteristics [13, 14]. Recently, much effort has been
focused on development of molecular fingerprinting techniques.
Their application in bacterial identification is limited for high
costs and the requirement for trained personnel. In addition, it is
difficult for the above methods to identify and count the mixed
bacteria simultaneously. Hyperspectral imaging technique, as
rapid and nondestructive method integrates computer vision and
spectral analysis techniques to acquire spectral information of
each pixel location in a two-dimensional (2D) objective image,
generating a multi-dimensional data (one-dimensional spectral
dimension and two- dimensional spatial information) [15, 16].
Each strain colony with unique fingerprints spectrum has been
identified successfully by taking full advantage of one-dimensional
spectral information [17–19]. Although hyperspectral imaging
technology is very useful for strain identification during mixed
fermentation, there are still exist a major issue: rapid and automated
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enumeration of multiple strains. Some research groups studied
the visual distribution of target combing the one-dimensional
spectral information and two spatial dimensions. The specific
strain colonies can be positioned and marked considering the
two-dimensional spatial information. Therefore, hyperspectral
imaging technology can realize rapid identification and visual
counting of strains in mixed fermentation to monitor microbial
community.

Hyperspectral imaging technique was investigated to establish
a microflora detection system for mixed fermentation. Three
dominant strains (Acetobacter pasteurianus, Lactobacillus paracasei
and Enterobacter sp.) were used in mixed fermentation to simulate
themixed fermentation of vinegar.Their colonies will be recognized
and each strain can be counted after plating culture. It is expected to
provide a new way for rapid monitoring the microbial community
in mixed fermentation.

2. MATERIALS AND METHODS

2.1. Bacterial strains and culture conditions

This study was conducted using three strains, namely Acetobacter
pasteurianus (ChinaCenter of Industrial Culture Collection (CICC)
20064), Lactobacillus paracasei (CICC 7000), and Enterobacter sp.
(CICC 10595) from China Center of Industrial Culture Collection.
These strains were classified asAcetobacter sp., Lactobacillus sp., and
Enterobacter sp., respectively. The strains were revived to live cells
from frozen stocks through culturing in a sterilized Luria-Bertani
(LB) broth (1% tryptone, 0.5% yeast extract, and 1% NaCl) for 24 h
at 37◦C. A series of diluted suspensions (103-, 104-, 105- and 106-
fold,) and theirmixed suspensions with same volumewere prepared
with sterile water. The pure and mixed suspensions (0.1 mL) were
spread onto LB agar plates (1% tryptone, 0.5% yeast extract, 2%
agar, and 1% NaCl) in 9 cm petri dishes and incubated at 37◦C for
24 h. Finally, these pure (2 × 3 × 4= 24) and mixed (2 × 4= 8)
plates are prepared in duplicate. The experimental procedures were
performed in triplicate to evaluate repeatability (3 × 24=72 plates
for pure plates, 3× 8=24 plates for mixed plates).

2.2. Acquisition of hyperspectral image

Data acquisition was conducted using a hyperspectral imaging
system developed by the Agricultural Product Processing and
Storage Lab at Jiangsu University in China. This system consists of
mainly a line-scan spectrograph (ImSpector, VI7E, Spectra Imaging
Ltd., Finland) with a spectral range of 431 ~ 962 nm in 618
spectral bands and a resolution of approximately 0.858 nm; a
CMOS camera (XEVA-FPA-1.7-320, XenIcs Ltd., Belgium) with
a resolution of 1628 × 618 pixels; a direct-current illuminator
(2900, Illumination Technologies Inc., USA); a conveyor belt (Zolix
TS200AB, Zolix. Corp., China); data acquisition and preprocessing
software (Spectra-Cube, Auto Vision Inc., USA), an enclosure; and
a computer. For more details regarding the imaging system, refer to
the study of Zou et al [20].

The agar plates were placed on the conveyor for acquisition of
hyperspectral images, and a hypercube was created using spatial
(a × b pixels) and spectral information (m wavebands). The

information was represented by a three-dimensional (3D) image
with x-axis, y-axis, and L-axis coordinate information. A single
hyperspectral image of each agar plate was stored in raw form
before being processed, and the intensities of the images varied with
their wavelengths. Hyperspectral images can include signal noise
such as that caused by illumination and detector sensitivity. For
calibration of the reflectance intensity values at each pixel of the
hyperspectral images, the reflectance spectrum at every pixel was
calculated using a “dark” image (approximately 0% reflectance) and
a “white” image (approximately 99.9% reflectance). The details of
hyperspectral calibration can be found in our previous study [21].

2.3. Spectral data extraction

After image calibration, rectangular regions of interest (ROIs) were
extracted from the hyperspectral images of the agar plates by
using ENVI 4.5 (ITT Visual Information Solutions, Boulder, CO,
USA) software. A ROI with a size of 15 × 15 pixels was selected
from the center of each colony. The species of the colonies in
each image were estimated from the responses of each pixel in
the ROI. Simultaneously, the average relative reflectance of each
image was calculated using the spectral response of each pixel in
the ROI. Then, five spectra from five colonies of the same species
were averaged into one spectrum. Eventually, 90 average reflectance
spectra were obtained from the three strains. All the spectrum data
were randomly divided into calibration and prediction datasets in a
ratio of 2:1. The calibration dataset is used for building calibration
models for identifying colony regions and the prediction dataset is
for testing the robustness of calibration models.

2.4. Development of identification models

The hyperspectral images acquired using the hyperspectral imaging
system present 3D data, including numerous spatial and spectral
data. The spectral data between sequential wavelengths are closely
related and contain redundant features [22]. Employing spectral
data directly to develop a calibrationmodel is difficult without using
chemometrics. Feature wavelength selection is crucial and has a
profound influence on the performance of a model. In this study,
linear discriminant analysis (LDA) and a least-squares support
vector machine (LS-SVM) were employed to build calibration
models for colony identification, and a genetic algorithm (GA)-
partial least-squares (PLS) (GA-PLS) algorithmwas applied to select
feature wavelengths from the spectral data to optimize the LS-SVM
and LDA procedures.

2.4.1. Spectral data processing
During the acquisition of the hyperspectral images, spectral
information is affected by high-frequency random noise and
background information, such as illumination intensity and dark
current, when the same sample is tested repeatedly [23]. This
leads to instability and unreliability in calibration models. In this
study, several spectral pretreatment methods, including standard
normal variate (SNV), multiplicative scatter correction, first order
derivate, and second order derivate were employed to manage the
raw data.Characteristic wavelength selection
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In this study, a GA was applied to select the feature wavelengths,
and the PLS method was applied to develop regression models
from the characteristic wavelengths. The characteristic wavelengths
resulting in the lowest value in terms of the root mean square error
of cross-validation (RMSECV) or the highest value in regression
coefficients were selected [24]. Cross-validation was used during
the GA procedure. Parameters were initialized randomly in the
first stage and then are updated using evolutionary methods. The
number of runs, initial population size, recombination rate, and
mutation rate were set to 130, 30, 0.50, and 1% according to previous
literature [25], respectively.

2.4.2. Characteristic wavelengths selection
In this study, a GA was applied to select the feature wavelengths,
and the PLS method was applied to develop regression models
from the characteristic wavelengths. The characteristic wavelengths
resulting in the lowest value in terms of the root mean square error
of cross-validation (RMSECV) or the highest value in regression
coefficients were selected [24]. Cross-validation was used during
the GA procedure. Parameters were initialized randomly in the
first stage and then are updated using evolutionary methods. The
number of runs, initial population size, recombination rate, and
mutation rate were set to 130, 30, 0.50, and 1% according to previous
literature [25], respectively.

2.4.3. Development of identification models
The performance of the final model was estimated using the
correlation coefficient of calibration (Rc) and the root mean square
error of cross-validation (RMSECV) and was tested using the
correlation coefficient of prediction (Rp) and the root mean square
error of prediction (RMSEP) [26]. In general, a good model should
have high Rc and Rp values with low RMSECV and RMSEP values.

LDA is a pattern recognition method that reduces the dimensions
of a matrix to extract the characteristic variances and condenses
the information into latent variances [27]. It is a supervised
learning method and has been successfully implemented to
identify strains. In LDA, optimal transformation is conducted
to minimize within-class distance and maximizes between-class
distance simultaneously by detecting the affinity of a set of unknown
samples and separating the objects into clusters or groups, thus
achieving maximum discrimination. The latent variances in LDA
are linear combinations of the raw variances. The first two LDA
functions are named LD1 and LD2. A 2D spatial expression of
LD1 and LD2 is obtained to reveal the cluster trends of the
training dataset [28]. After clustering, the spectra obtained by SNV
processing and aGAwere applied to establish the LDA classification
model.

The LS-SVM algorithm was proposed by Suykens and Vandewalle
and is a modified support vector machine. LS-SVMs are powerful
for rapid linear and nonlinear multivariate calibration while
maintaining the advantages of a support vector machine. LS-
SVMs can use a kernel function to map nonlinear data and input
variables into a high-dimensional feature space, thus transforming
the optimization problem into a problem of satisfying equality
constraints [29]. The determination of an appropriate kernel
function and optimumkernel parameters are crucial to the results of

an LS-SVMmodel. A radial basis function (RBF) kernel is the most
efficient function for minimizing the computational complexity of a
procedure and could be applied to manage the linear and nonlinear
relationships between spectra and target attributes [30]. Therefore,
an LS-SVM combined with an RBF kernel was used in this study.
To obtain high performance, leave-one-out cross-validation was
employed to obtain the optimal combination of the regularization
parameter (γ) and kernel function parameter (σ2) in terms of the
lowest cost value.

2.5. Automated count of microbial colonies

Themixed strain colonies were identified by the calibration models
and counted with assisted of orientation and marking. Suspensions
of three kinds of bacteria were mixed in any proportion and then
the mixture was diluted (105-fold) with sterilized water. Finally,
0.1 mL of mixture was smeared onto LB agar plates (1% tryptone,
0.5% yeast extract, 2% agar, and 1% NaCl) in 9 cm petri dishes and
incubated at 37◦C for 24 h. To count microbial colonies in mixed
colony plates, hyperspectral images of colony plates were acquired
and spectral data of each pixel were extracted from hyperspectral
images at the selected feature wavelengths.Then, the spectral data of
each pixel were substituted into the optimal calibration model. The
category of each pixel was identified and different strain colonies
were visualized with different colors.Themicrobial colonies on agar
plates can be counted according to the colors. The key steps for
analyzing hyperspectral imaging data are illustrated in Figure 1.

2.6. Software

Spectral Cube (ImSpector, Auto Vision Inc., USA) was used for
acquiring and storing the hyperspectral images of the agar plates.
ENVI 4.5 (ITT Visual Information Solutions, Boulder, CO, USA)
was used to extract the spectral reflectance from the hyperspectral
images. Matlab V7.0 (Math Works, USA) was used on a computer
with Windows 7 (Microsoft) to conduct image and data analysis.

3. RESULTS AND DISCUSSION

3.1. Appearance of the colonies of different
strains

Colonies of A. pasteurianus, L. paracasei, and Enterobacter sp.
growing on LB agar after incubation for 24 h at 37 ◦C is shown
in Figure 2. For the colonies of A. pasteurianus (Figure 2 a), the
grown colonies are not homogeneous, and the center and edges
differwithin colonies of the same strain. It is the same as the colonies
of L. paracasei (Figure 2 b), and Enterobacter sp. (Figure 2 c). By
comparing the three stain colonies, each strain colony is roughly
circular but the shape and size differences between each strain
colony are not great and clear. Although the pseudo-color maps
are different, it is difficult to distinguish them by observing their
colors. It is because some parts of them have same colors. It was
not easy to use the colony shape, size, and color features to segment
the specific colonies in the imaging process.Thus, identification and
enumeration of specific species from amixed strains culture cannot
be implemented by the manual counting method and automated
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Figure 1 | Key steps for analyzing hyperspectral imaging data and counting strain colonies

counting method with the aid of digital camera images.

Figure 2 |Digital images of colonies of A. pasteurianus (a), L. paracasei
(b), and Enterobacter sp. (c), the insets display the pseudo-color maps
of each strain colonies

3.2. Spectra of strain colonies

The spectral curves of the three strain colonies on the agar plates
are extracted from the hyperspectral images and presented in
Figure 3.Figure 3 a and b reveal the raw reflection spectra and
mean reflectance spectra. These spectra of colonies varied with
the wavelengths and displayed reflectance peaks (Figure 3 a).
The spectral curves at wavelengths of 550 ~ 700 nm exhibited
high reflectance, and an obvious reflectance peak was observed
at approximately 670 nm. Moreover, a weak reflectance peak was
observed at approximately 980 nm and could be attributed to the
secondO-H stretching of carbohydrates and water [31]. Reflectance
spectra are sensitive to changes in the cellular components and
structure of the bacterial metabolic product that are related to the
response of the X-H bond (such as O-H, C-H andN-H). Eachmean
spectrum was acquired from 30 spectra of the corresponding strain
colonies. As seen from the mean spectra, the spectral curves of
strain colonies showed similar trends in wavelengths of 550 ~ 700
nm.The reflection signal responses of each strain colonies exhibited
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conspicuous discrepancies in peak strength and peak shape. Despite
of these difference, it is still difficult to identify the target strain by
using naked eyes. Therefore, the spectral features combined with
chemometrics would be used for identifying strains.

The spectra of strain colonies were preprocessed by different
pretreatment methods and the spectra after SNV processing
were used for further analysis (Figure 3 c). By comparison
with several pretreatment methods, SNV processing achieved the
highest performance for building identification models. The SNV
processing converted each spectrum to a zero-mean intensity or
absorbance value with a standard deviation of one [32]. SNV was
used to eliminate slope variation and to correct scatter effects in
terms of light scattering and changes in light path length [33].

Figure 3 |Meanreflectance spectra, (b) raw reflectance spectra, and (c)
spectra after SNV preprocessing for different bacterial colonies

3.3. Characteristic wavelengths selection

In this study, GA combined with PLS method was used to process
spectral data for selecting characteristic variables. The resulting
regression coefficients and RMSECV are used to evaluate the target
response of the dataset [34]. Twenty-three wavelengths (583, 580,
582, 587, 434, 585, 638, 617, 697, 774, 861, 433, 435, 486, 518,
558, 561, 584, 591, 639, 692, 753, and 908 nm) were selected as
characteristic wavelengths. The RMSECV and RMSEP values of the
PLS models were 0.114 and 0.156, respectively. The identification
rate of prediction dataset achieved 98.2%, demonstrating the
identification model established by characteristic wavelengths had
high capability to identify different strain colonies. Moreover, the
obtained calibration original from the newmatrix with less variance
selected by GA was more simple and robust than that from full
spectral data. The results suggest that GA is a feasible method
to select feature wavelengths for establishment of the optimal
calibration model. Then, the new data matrix will be applied to
establish an identification model for further analysis in this study.
This process was performed thrice to avoid stochastic influence.

3.4. Development of identification models

3.4.1. Results of LDA model
A LDA model was established on the basis of the 23 characteristic
wavelengths with identification rates of 95.00% and 90.00% for the
calibration and prediction sets, respectively. LDA is a dimension
reduction method, and the plane with the smallest dimension is
determined from a dataset such that the objects related to the
plane are mapped from a higher dimensional space into a lower
dimensional space [35]. Figure 4 displays a clear cluster trend of
the three species along the top-two score plot of the LDA (LD1
and LD2). LD1 and LD2 explain 80.03% and 8.47% of the variance,

respectively. The accumulated variance contribution rate is 88.50%.
Three strains could be well separated by using the LD1 and LD2
planes. Enterobacter sp. gathered in an independent area implying
that it could be entirely distinguished fromother two strain colonies.
L. paracasei andA. pasteurianus hadmutual overlaps in a small part
of cluster area. The score cluster plot demonstrated that the three
strains could be distinguished by the spectral features processed by
LDA. After clustering, the top ten scores (LD1, LD2, LD3, LD4,
LD5, LD6, LD7, LD8, LD9, and LD10) were used to establish an
identification model (LDA model). The recognition rates (Rc and
Rp) are 95% and 90% in the calibration set and prediction set,
respectively (Table S1Appendix A). Enterobacter sp. colonies were
correctly identified with 100% of recognition rate A. pasteurianus
and L. paracasei were mutually identified as each other, with more
than 80% and 90% of recognition rate, respectively.

Figure 4 | Score cluster plot with LD1 and LD2 values for three strain
colonies

3.4.2. Results of LS-SVM model
In this study, LS-SVMwas used to develop LS-SVMmodel based on
the 23 characteristic wavelengths. Figure S1Appendix A presents
a contour chart in which different cost values are displayed using
different colors. Here, the best combination of two parameters (γ
and σ2) was searched during the two stages. First, a large stage in a
10 × 10 grid (represented as “·”) was implemented. Subsequently,
a smaller stage in a 10 × 10 grid (represented as “×”) was applied
to obtain the optimal combination of the two parameters. In both
stages, the lowest cost value was determined by using the contour
chart. The best parameters γ = 0.8914 and σ2 = 7.7791 were
obtained for establishment of LS-SVMmodel.The recognition rates
of LS-SVMmodel were 100.00% and 96.67% the calibration set and
prediction sets, respectively. As listed in Table S1Appendix A, one
of A. pasteurianus colonies was predicted incorrectly among the
prediction samples. Enterobacter sp. and L. paracasei were correctly
identified with 100% of recognition rate. This error may be caused
by similar metabolite production-molecular structure or chemical
components—between two samples.The excellent recognition rates
demonstrated that the three strain colonies could be completely
distinguished by combining GA and LS-SVM.
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Table 1 | Resultsof colonies counting in pure cultures and mixed cultures

Sample Species Pure culture (CFU/mL) Mixed cultures (CFU/mL) Average relative
error (%)

Manual
method

This method a Manual
method

This methoda

1
Enterbacter sp. 40 40± 3 41 40± 3 1.25
A. pasteurianus 27 29± 2 28 29± 2 5.29
L. paracasei 19 18± 1 20 18± 2 7.63

2
Enterbacter 37 38± 1 43 43± 1 1.35
A. pasteurianus 24 25± 2 28 27± 3 3.87
L. paracasei 28 26± 3 27 28± 2 5.42

3
Enterbacter 56 56± 3 59 58± 3 0.85
A. pasteurianus 50 52± 3 53 50± 2 4.83
L. paracasei 47 45± 2 43 46± 3 5.62

4
Enterbacter 40 40± 1 46 46± 1 0
A. pasteurianus 62 60± 2 62 64± 1 3.22
L. paracasei 40 42± 2 45 43± 1 4.72

5
Enterbacter 52 52± 3 54 55± 1 0.93
A. pasteurianus 58 55± 3 61 58± 3 5.04
Enterbacter 47 50± 2 49 51± 3 5.23

a: Mean± difference

3.4.3. Comparison of identification models
Table S1Appendix A lists the recognition results of the LS-
SVM and LDA models based on the selected 23 characteristic
wavelengths. As observed from this table, the LS-SVM model
provided recognition rates of 100% for the calibration dataset
and 96.67% for the prediction dataset. The LDA model provided
recognition rates of 95.00% for the calibration dataset and 90.00%
for the prediction dataset. The LS-SVM model achieved higher
performance than the LDA model. This is possibly because the
growth of species and metabolite production are complicated and
may involve nonlinear characteristics. The nonlinear LS-SVM may
provide superior solutions to those of LDA.Therefore, the LS-SVM
model would be used for further analysis.

4. AUTOMATED COUNT OF MICROBIAL
COLONIES

A colony distribution map was developed to enumerate the
confluent colonies on the agar plate by using hyperspectral imaging
technology and the established LS-SVMmodel (Figure 5 and Table
1). As seen from the colony characteristics, Enterobacter sp. colonies
were different from the other two strain colonies. However, A.
pasteurianus, and L. paracasei could not be easily distinguished by
naked eyes base on the colony characteristics. Three strain colonies
on hyperspectral images were identified, namely Enterobacter sp.,
A. pasteurianus, and L. paracasei according to the LS-SVM model.
To fix the position of the colonies, image binary method was
used to separate colonies from background combined with the
two-dimensional in hyperspectral images (Figure 5b). Finally, the
bacterial colonies were marked in specific color, forming colony
distribution map (Figure 5c). Red, blue, and green represented
Enterobacter sp., A. pasteurianus, and L. paracasei in colony
distribution map and there are 40 red circles, 29 blue circles and 18
green circles (Figure 5c). The diluted suspension with gradient of
10−6 was cultured in mixed colonies plates (Figure 5a). That is to

say: microbial community of the mixed suspension was consisted
of Enterobacter sp. (40× 106 CFU/mL), A. pasteurianus (29×
106 CFU/mL), and L. paracasei (18× 106 CFU/mL). The quantity
ratio of the three strains was 40: 29: 18. The hyperspectral image
technology is capable of segmenting and counting different species
of bacteria incubating on the same plate on the basis of spectral
features. This cannot be easily performed through the traditional
methods.

Table 1 lists the counting results of pure and mixed cultures
through manual counting method and counting method based on
hyperspectral image technology. Thirty agar plates of pure and
mixed strain were analyzed by the developed counting method.
For detection, pure cultures of Enterobacter sp., A. pasteurianus,
and L. paracasei were inoculated in three separate petri dishes, and
a mixture of Enterobacter sp., A. pasteurianus, and L. paracasei
with same concentration was inoculated in another petri dish. The
counting results of developed method was in according with that
of the manually counting method with an average relative error
of 3.70%. The results of hyperspectral and manual counting were
agreeable. Colonies of L. paracasei counting has the maximum
relative error (7.63%) and colonies of Enterbacter sp. counting has
the minimum relative error (0%). The identification of Enterbacter
sp. was the most accurate among the identification of the three
strain colonies. This result indicates that the hyperspectral image
technology provides an accurate estimation of the number of
colonies. The counting error might be caused by the competition of
confluent colonies and the unclear colonies boundaries. Moreover,
error in the dilution procedure and model discrimination error
might have occurred.

5. CONCLUSION

In this study, hyperspectral imaging technology was successfully
used for enumerating each species in a microbial community and
monitoring the changes in the mixed fermentation. Pure andmixed
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Figure 5 | (a) Digital image of the three strain agar plates, (b) the
segmentation binaryimage, and (c) colonies distribution map of each
strains

colonies on agar plates were prepared and hyperspectral images
were captured. Hyperspectral image data of the bacteria were
processed by using SNV, GA, LDA, and LS-SVM. LDA and LS-SVM
identification models were established on the basis of characteristic
variables and achieved recognition rates of 90.00% and 96.67%,
respectively. The optimal identification model (LS-SVM) was used
to separate each bacterial colony from the background and identify
strain colonies in images. Colony distribution maps were obtained
displaying the three strains with different colors. The number
of bacteria of each species was determined according to the
colorful colonies, and the results were similar to those obtained
through the manual counting method. A maximum relative error
of 7.63% and an average relative error of 3.70% indicated that the
hyperspectral image technology is useful for distinguishing and
counting bacteria simultaneously. This suggests the feasibility of
hyperspectral imaging technology to rapidly monitor microbial
communities.
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